Scientific Research about Ayahuasca

Find Research and Scientific Knowledge about Ayahuasca and its healing effects.

Watch more videos about Ayahuasca Research on our YouTube Channel

Scientific Articles about Ayahuasca

Skærmbillede 2015-01-14 kl. 18.27.03

Changes in aminoacidergic and monoaminergic neurotransmission in the hippocampus and amygdala of rats after ayahuasca ingestion

AIM: To evaluate changes in neurotransmission induced by a psychoactive beverage ayahuasca in the hippocampus and amygdala of naive rats.

METHODS: The level of monoamines, their main metabolites and amino acid neurotransmitters concentrations were quantified using high performance liquid chromatography (HPLC). Four groups of rats were employed: saline-treated and rats receiving 250, 500 and 800 mg/kg of ayahuasca infusion (gavage). Animals were killed 40 min after drug ingestion and the structures stored at -80 °C until HPLC assay. The data from all groups were compared using Analysis of variance and Scheffé as post test and P < 0.05 was accepted as significant.

RESULTS: The results showed decreased concentrations of glycine (GLY) (0.13 ± 0.03 vs 0.29 ± 0.07, P < 0.001) and γ-aminobutyric acid (GABA) (1.07 ± 0.14 vs 1.73 ± 0.25, P < 0.001) in the amygdala of rats that received 500 of ayahuasca. Animals that ingested 800 mg/kg of ayahuasca also showed a reduction of GLY level (0.11 ± 0.01 vs 0.29 ± 0.07, P < 0.001) and GABA (0.98 ± 0.06 vs 1.73 ± 0.25, P < 0.001). In the hippocampus, increased GABA levels were found in rats that received all ayahuasca doses: 250 mg/kg (1.29 ± 0.19 vs 0.84 ± 0.21, P < 0.05); 500 mg/kg (2.23 ± 038 vs 084 ± 0.21, P < 0.05) and 800 mg/kg (1.98 ± 0.92 vs 0.84 ± 0.21, P < 0.05). In addition, an increased utilization rate of all monoamines was found in the amygdala after ayahuasca administration in doses: 250 mg/kg (noradrenaline: 0.16 ± 0.02 vs 0.36 ± 0.06, P < 0.01; dopamine: 0.39 ± 0.012 vs 2.39 ± 0.84, P < 0.001; serotonin: 1.02 ± 0.22 vs 4.04 ± 0.91, P < 0.001), 500 mg/kg (noradrenaline: 0.08 ± 0.02 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.33 ± 0.19 vs 2.39 ± 0.84, P < 0.001; serotonin: 0.59 ± 0.08 vs 4.04 ± 0.91, P < 0.001) and 800 mg/kg (noradrenaline: 0.16 ± 0.04 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.84 ± 0.65 vs 2.39 ± 0.84, P < 0.05; serotonin: 0.36 ± 0.02 vs 4.04 ± 0.91, P < 0.001).

CONCLUSION: Our data suggest increased release of inhibitory amino acids by the hippocampus and an increased utilization rate of monoamines by the amygdala after different doses of ayahuasca ingestion.

Keywords: Ayahuasca, Amino Acids, Monoamines, Hippocampus, Amygdala

Core tip: Several studies have indicated that the main component of ayahuasca, N,N-dimethyltryptamine (DMT), is structurally similar to serotonin (5-hydroxytryptamine or 5-HT) and also has similarities with lysergic acid and mescaline, normally employed in drug addiction. This infusion contained DMT as a principal ingredient in a psychoactive beverage, used by more than 70 different indigenous groups spread throughout Brazil, Colombia, Peru, Venezuela and Ecuador. In human beings, it is also present in the brain as an endogenous substance and is found in blood, urine and cerebrospinal fluid. After oral administration of ayahuasca at different doses to naïve rats, we found that ayahuasca ingestion could modify neurotransmitter release in limbic brain structures.

Skærmbillede 2015-01-14 kl. 18.27.03

Human Pharmacology of Ayahuasca: Subjective and Cardiovascular Effects, Monoamine Metabolite Excretion, and Pharmacokinetics

The effects of the South American psychotropic beverage ayahuasca on subjective and cardiovascular variables and urine monoamine metabolite excretion were evaluated, together with the drug's pharmacokinetic profile, in a double-blind placebo-controlled clinical trial. This pharmacologically complex tea, commonly obtained from Banisteriopsis caapi and Psychotria viridis, combines N,N-dimethyltryptamine (DMT), an orally labile psychedelic agent showing 5-hydroxytryptamine2A agonist activity, with monoamine oxidase (MAO)-inhibiting β-carboline alkaloids (harmine, harmaline, and tetrahydroharmine). Eighteen volunteers with prior experience in the use of psychedelics received single oral doses of encapsulated freeze-dried ayahuasca (0.6 and 0.85 mg of DMT/kg of body weight) and placebo. Ayahuasca produced significant subjective effects, peaking between 1.5 and 2 h, involving perceptual modifications and increases in ratings of positive mood and activation. Diastolic blood pressure showed a significant increase at the high dose (9 mm Hg at 75 min), whereas systolic blood pressure and heart rate were moderately and nonsignificantly increased. Cmax values for DMT after the low and high ayahuasca doses were 12.14 ng/ml and 17.44 ng/ml, respectively. Tmax (median) was observed at 1.5 h after both doses. The Tmax for DMT coincided with the peak of subjective effects. Drug administration increased urinary normetanephrine excretion, but, contrary to the typical MAO-inhibitor effect profile, deaminated monoamine metabolite levels were not decreased. This and the negligible harmine plasma levels found suggest a predominantly peripheral (gastrointestinal and liver) site of action for harmine. MAO inhibition at this level would suffice to prevent first-pass metabolism of DMT and allow its access to systemic circulation and the central nervous system.

Skærmbillede 2015-01-14 kl. 18.27.03

Personality, Psychopathology, Life Attitudes and Neuropsychological Performance among Ritual Users of Ayahuasca: A Longitudinal Study

Ayahuasca is an Amazonian psychoactive plant beverage containing the serotonergic 5-HT2A agonist N,N-dimethyltryptamine (DMT) and monoamine oxidase-inhibiting alkaloids (harmine, harmaline and tetrahydroharmine) that render it orally active. Ayahuasca ingestion is a central feature in several Brazilian syncretic churches that have expanded their activities to urban Brazil, Europe and North America. Members of these groups typically ingest ayahuasca at least twice per month. Prior research has shown that acute ayahuasca increases blood flow in prefrontal and temporal brain regions and that it elicits intense modifications in thought processes, perception and emotion. However, regular ayahuasca use does not seem to induce the pattern of addiction-related problems that characterize drugs of abuse. To study the impact of repeated ayahuasca use on general psychological well-being, mental health and cognition, here we assessed personality, psychopathology, life attitudes and neuropsychological performance in regular ayahuasca users (n = 127) and controls (n = 115) at baseline and 1 year later. Controls were actively participating in non-ayahuasca religions. Users showed higher Reward Dependence and Self-Transcendence and lower Harm Avoidance and Self-Directedness. They scored significantly lower on all psychopathology measures, showed better performance on the Stroop test, the Wisconsin Card Sorting Test and the Letter-Number Sequencing task from the WAIS-III, and better scores on the Frontal Systems Behavior Scale. Analysis of life attitudes showed higher scores on the Spiritual Orientation Inventory, the Purpose in Life Test and the Psychosocial Well-Being test. Despite the lower number of participants available at follow-up, overall differences with controls were maintained one year later. In conclusion, we found no evidence of psychological maladjustment, mental health deterioration or cognitive impairment in the ayahuasca-using group.

Skærmbillede 2015-01-14 kl. 18.27.03

Composition, Standardization and Chemical Profiling of Banisteriopsis caapi, a Plant for the Treatment of Neurodegenerative Disorders Relevant to Parkinson’s Disease

Ethnopharmacological relevance

Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of B. caapi has been established for alleviating symptoms of neurological disorders including Parkinson’s disease.

Aim of the study

Primary objective of this study was to develop the process for preparing standardized extracts of B. caapito achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities.

Skærmbillede 2015-01-14 kl. 18.27.03

Quantitation of N,N-Dimethyltryptamine and Harmala Alkaloids in Human Plasma after Oral Dosing with Ayahuasca


Harmine, harmaline, tetrahydroharmine (THH), and N,N-dimethyltryptamine (DMT) were quantitated in plasma from 15 healthy male volunteers after the ingestion of ayahuasca, a beverage that has been used for religious purposes in Brazil since pre-Columbian times. A growing awareness of the interest in this ancient shamanistic practice in modern urban cultures and the widespread popular dissemination of the inebriant effects and type and sources of the plant admixtures used to prepare the beverage have provided additional impetus for this study. The three harmala alkaloids were quantitated from protein-precipitated plasma by high-performance liquid chromatography using fluorescence detection. Recovery from blank human plasma was quantitative, and the limit of quantitation (LOQ) was below 2 ng/m/of plasma for each of the harmala alkaloids. Standard concentrations ranged from 10 to 250 ng/mL for harmine and THH and from 1.0 to 25.0 ng/mL for harmaline, respectively. Linearity was observed for harmine, harmaline, and THH within these respective ranges. The highest concentrations of harmala alkaloids in human plasma were found to be 222.3 ng/mL for harmine, 134.5 ng/mL for THH, and 9.4 ng/m/for harmaline. DMT was quantitated by gas chromatography using nitrogen-phosphorus detection after liquid-liquid extraction with diphenhydramine as an internal standard. DMT recovery was quantitative, and the limit of detection and LOQ were 0.5 and 5 ng/mL, respectively. Linearity for DMT was observed from 5 to 1000 ng/m/. The one-step extraction method for DMT and the protein precipitation method for the three harmala alkaloids afford rapid, sensitive, and quantitative analyses of these alkaloids with minimal analyte loss. The analytical methods also may be applicable to other matrices, including whole blood and urine samples and homogenized tissue specimens. These are the first reported observations of DMT and harmala alkaloids in plasma after ritual ingestion of ayahuasca.

Skærmbillede 2015-01-14 kl. 18.27.03

Topographic pharmaco-EEG mapping of the effects of the South American psychoactive beverage ayahuasca in healthy volunteers

Aims  Ayahuasca is a traditional South American psychoactive beverage used in Amazonian shamanism, and in the religious ceremonies of Brazilian-based syncretic religious groups with followers in the US and several European countries. This tea contains measurable amounts of the psychotropic indole N,N-dimethyltryptamine (DMT), and β-carboline alkaloids with MAO-inhibiting properties. In a previous report we described a profile of stimulant and psychedelic effects for ayahuasca as measured by subjective report self-assessment instruments. In the present study the cerebral bioavailability and time-course of effects of ayahuasca were assessed in humans by means of topographic quantitative-electroencephalography (q-EEG), a noninvasive method measuring drug-induced variations in brain electrical activity.

Methods  Two doses (one low and one high) of encapsulated freeze-dried ayahuasca, equivalent to 0.6 and 0.85 mg DMT kg−1 body weight, were administered to 18 healthy volunteers with previous experience in psychedelic drug use in a double-blind crossover placebo-controlled clinical trial. Nineteen-lead recordings were undertaken from baseline to 8 h after administration. Subjective effects were measured by means of the Hallucinogen Rating Scale (HRS).

Results  Ayahuasca induced a pattern of psychoactive effects which resulted in significant dose-dependent increases in all subscales of the HRS, and in significant and dose-dependent modifications of brain electrical activity. Absolute power decreased in all frequency bands, most prominently in the theta band. Mean absolute power decreases (95% CI) at a representative lead (P3) 90 min after the high dose were −20.20±15.23 µV2 and −2.70±2.21 µV2 for total power and theta power, respectively. Relative power decreased in the delta (−1.20±1.31% after 120 min at P3) and theta (−3.30±2.59% after 120 min at P3) bands, and increased in the beta band, most prominently in the faster beta-3 (1.00±0.88% after 90 min at P3) and beta-4 (0.30±0.24% after 90 min at P3) subbands. Finally, an increase was also seen for the centroid of the total activity and its deviation. EEG modifications began as early as 15–30 min, reached a peak between 45 and 120 min and decreased thereafter to return to baseline levels at 4–6 h after administration.

Conclusions  The central effects of ayahuasca could be objectively measured by means of q-EEG, showing a time pattern which closely paralleled that of previously reported subjective effects. The modifications seen for the individual q-EEG variables were in line with those previously described for other serotonergic psychedelics and share some features with the profile of effects shown by pro-serotonergic and pro-dopaminergic drugs. The q-EEG profile supports the role of 5-HT2 and dopamine D2-receptor agonism in mediating the effects ofayahuasca on the central nervous system.